

The Manufacturer & Designer of

BUSDUCT SYSTEM

CONTENT

Introduction Product Overview

- Technical Features
- Conductor
- Epoxy
- Other Insulation Type
- Joint System
- Tap-Off Unit
- IP Busduct

Electrical Characteristics

Standard Component

Busduct Layout Design Consideration

Measurement Guideline

Illustrations Of LINKK Busduct Trunking System

Installation

General Precaution

Quality Control

Certificates

Standard & Testing

Project References

- Site Photo
- Project Photo

Continuous Busduct Monitoring System

(i) OUR BACKGROUND

LINKK Busway Systems (M) Sdn Bhd is the leading designer and manufacturer of busduct trunking systems in Asia Pacific. Established in 1992, we have expanded our operations and now supply busduct trunking systems to over 30 countries worldwide.

Our focus on product R&D and manufacturing standards ensures that we are able to continuously improve product design and performance. In providing a product line that complies with newest international standards, we are constantly upgrading ourselves with renowned certification bodies like ASTA, KEMA, UL etc.

LINKK is determined to combine the best available product with the most comprehensive customer service in our delivery commitment to all our clients. Together with a strong track record of both private and national-level projects, this is the best testament to our reliability.

OUR VISION

- We aim to become the leading busduct manufacturer in the world.
- To meet customer needs and provide prompt services.
- Committed to produce uniform product quality and achieve total customer satisfaction.

VISION STATEMENT

We aim to design and manufacture the most reliable busduct system and provide custom engineering to our clients.

COMPANY QUALITY POLICY

- Total customer's satisfaction.
- Consistent product quality.
- Continual improvement.

i our mission

- Improving our quality by benchmarking our product and process.
- Expanding our range of products and services.
- Increasing our marketing activities worldwide.
- Investing in R&D.
- Developing and enhancing our human resources.

TECHNICAL FEATURES

LINKK is a busduct system developed by LINKK Busway Systems (M) Sdn Bhd. It is designed for commercial and industrial electrical distributions.

Standards

LINKK systems are tested and certified by **KEMA**, **ASTA** and **UL** to comply with:

- BS 5486, Part 2, 1990
- IEC 61439 Part 1:2011 (Updated from IEC 60439 Part 1:2005)
- IEC 61439 Part 6:2012 (For Busbar Trunking Systems BUSWAYS)
- IEC 60331
- IEC 60529

Busduct types

LINKK is light weight, low impedance, non-ventilated, naturally cooled and totally enclosed within the steel or aluminium housing for protection against mechanical damages and dust accumulation. It consists copper bars with purity >99.95%, or aluminium bars with conductivity >61%.

- · Feeder and plug-in type busducts.
- Indoor protection IP40/IP42/IP54/IP55/IP65/IP66.
- Outdoor protection IP66/IP67/IP68.
- Tap-off units(plug-in) protection IP2X/IP40/IP42/IP54/IP55.
- Fire retardant protection conforms to IEC 60331 and CNS 14286.

Our busduct can be applied to different system configuration as below:

- 3P3W
- 3P3W+50%E
- 3P4W
- 3P4W+50%E
- 3P4W+100%E
- 3P4W(200%N)
- 3P4W(200%N)+50%E
- 3P4W(50%N)
- 3P4W(50%N)+50%E

Other type of configuration can be designed upon special request from customer.

Unique features

The latest LINKK systems are incorporated with many improved designs/features to provide cost effective solutions for building a power system:

- Higher efficiency in power transmission/distribution.
- Lower installation cost.
- Easier maintenance.
- More compact and suitable for tight plan room space.
- Higher reliability.
- · Longer life span.
- Higher flexibility for future expansion.
- Extremely flexible in installation.

LINKK CONDUCTOR

All LINKK conductor are high density and conductivity >100% IACS with a minimum purity of 99.95%. It is fabricated through a sophisticated thermal compression process developed by LINKK which involves application of tremendous heat under high pressure. It can be fully tinned or silver-plated with epoxy powder coated as insulation giving 100% water and chemical resistance. Optional specifications can be designed and fabricated to customer requirement.

Advantages of using LINKK conductor are:

- · High electrical conductivity
- Low impurity
- Excellent fatigue resistance

- High thermal conductivity
- High mechanical strength
- Outstanding corrosion resistant

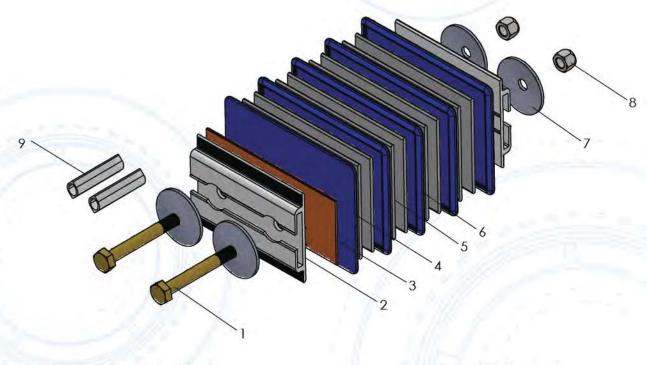
LINKK EPOXY

LINKK Epoxy System is the 3rd generation with own formulation. The class H-180°C standard epoxy coating provides 100% water proofing and high mechanical strength. It has been tested in accordance with IEC 61439-6 and BS 5486.

Advantages of using epoxy coating as insulations are:

- Design to withstand glitch and spikes in electrical system.
- Design to cater for expansion and contraction during peak and off-peak hours.
- Capable of withstanding heat shock.
- · High reliability under static conditions.
- High mechanical strength against impact.
- · High thermal conductivity.
- Water and chemical resistant.

OTHER INSULATION TYPE


Besides epoxy insulation, we also provide other classes of insulation as below:

- Class B- It consists of two layers of Mylar(Polyester Film) which resists temperature up to 130°C.
- Fire Rated It consists of 1 layer of mylar(polyester film) and 2 layers of Mica (mineral silicate sheet) which resist temperature up to 900°C.

JOINT SYSTEM

In order to overcome extreme rugged conditions at site, the new LINKK joint has been designed precisely and manufactured using the highest quality of materials to minimize all possible problems and enhance system performance. This special design provides outstanding features as follows:

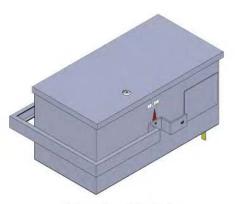
- Incorporates a 5mm thermal expansion and movement at every joint.
- Allow ±15mm of lateral adjustment (total 30mm) to correct site measurement inaccuracy.
- Able to tilt an angle of ±5°(total 10° along single axis).
- Bolt and nuts can be stainless steel, galvanized or chromed black high tensile steel.
- Degree of protection of IP40/IP54/IP66/IP67/IP68.
- Easy installation and removal of any joint in a run without disturbing the two adjacent busduct sections.
- Water/chemical resistance BMC insulation plates.

- 1. Joint bolt
- 2. Joint backing plate
- 3. Joint Earth Bar
- 4. Joint end insulator
- 5. Joint conductor bar

- 6. Joint phase insulator
- 7.Belleville disc
- 8. Nylon lock nut
- 9. Fiber tube

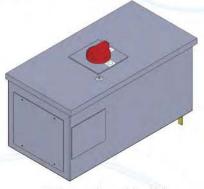


TAP-OFF UNITS(PLUG-IN UNITS)

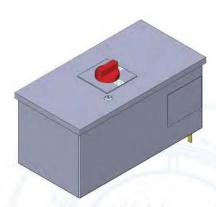

Tap-off unit with moulded case circuit breaker or fused-switch breakers of various current ratings are available to cater for most installations. Maximum 5 tap-off units per side can be installed, total 10 nos per length of 3m busduct subject to the size of MCCBs.

- All tap-off unit are designed with interlocking safety features to prevent removal when tap-off unit in 'On' position.
- When tap-off unit cover is open, automatically MCCB cannot be turned 'On'

On/off handle design



Bottom entry cable design



Top entry cable design

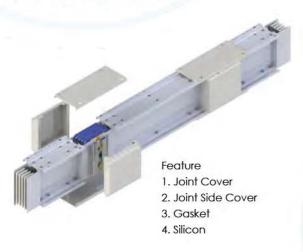
Rotary handle design

Bottom entry cable design

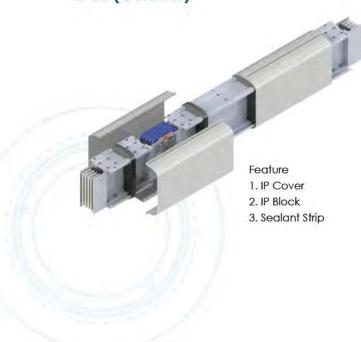
Top entry cable design

Outlet design

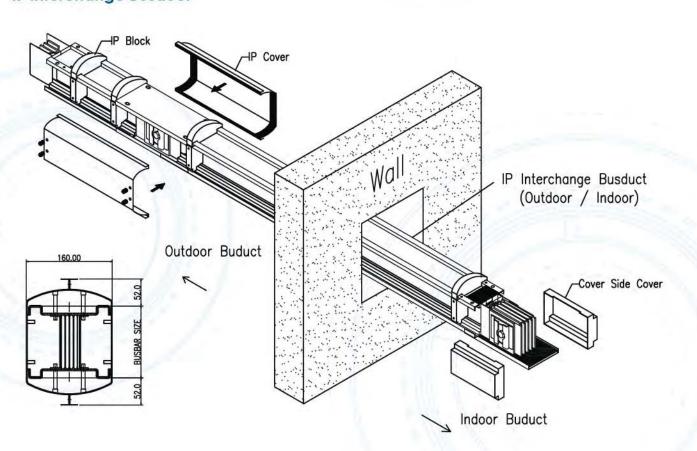
Bottom entry cable design



Top entry cable design

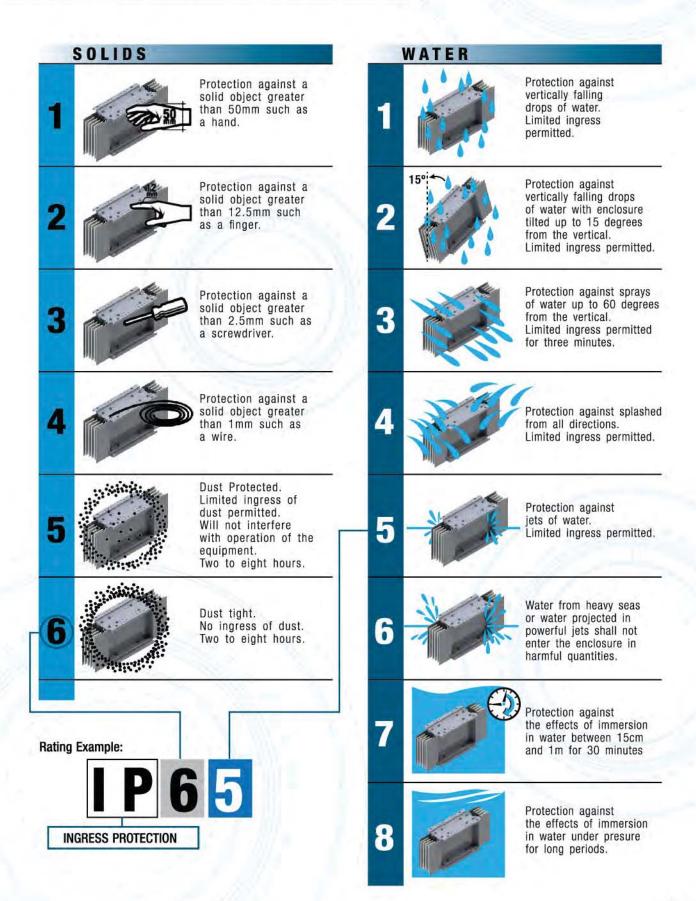

IP BUSDUCT

IP 54 to IP66 (Indoor)



^{*} IP 42 does not have Joint Side Cover

IP 66 (Outdoor)



IP Interchange Busduct

IP (INGRESS PROTECTION RATING GUIDE)

CONFIGURATION OF LINKK BUSWAY TRUNKING

Electrical Characteristics For Copper & Aluminium in 50Hz

Copper - 50Hz

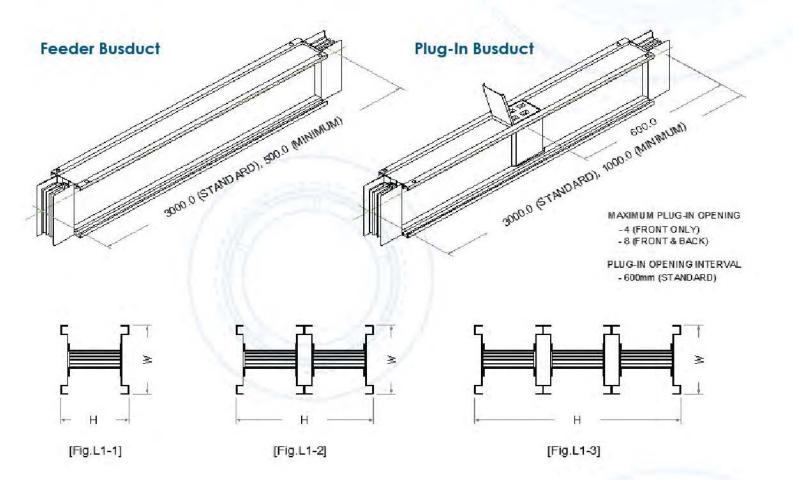
Rated Current	Impedance ($10^{-6} \Omega/m$)			Line	to line vo	oltage dro	p in (mV/	m) at rate	d current	and variou	us power	factors	
(A)	R	Х	Z	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
400	124.94	98.67	159.20	86.56	107.70	110.27	109.41	106.63	102.48	97.28	91.18	84.29	76.67
630	74.90	93.31	119.65	81.73	117.94	126.48	129.92	130.49	129.04	126.01	121.65	116.11	109.48
800	54.66	75.48	93.19	75.74	113.75	123.34	127.71	129.11	128.45	126.15	122.49	117.62	111.64
1000	45.24	25.40	51.88	78.36	89.70	89.08	86.27	82.21	77.28	71.66	65.48	58.78	51.61
1250	40.08	19.38	44.52	86.78	96.39	94.60	90.71	85.63	79.73	73.17	66.06	58.47	50.43
1600	26.81	15.35	30.89	74.30	85.41	84.96	82.39	78.61	73.99	68.71	62.87	56.54	49.76
2000	22.98	12.10	25.97	79.61	89.92	88.83	85.66	81.30	76.10	70.26	63.87	56.99	49.67
2500	18.38	10.30	21.07	79.59	91.07	90.43	87.56	83.43	78.42	72.71	66.42	59.62	52.34
3200	13.79	7.21	15.56	76.43	86.21	85.12	82.04	77.83	72.82	67.20	61.05	54.44	47.40
4000	11.28	4.67	12.21	78.15	84.44	81.93	77.81	72.77	67.10	60.91	54.31	47.33	40.01
5000	9.57	3.75	10.28	82.88	88.75	85.79	81.21	75.71	69.56	62.92	55.84	48.40	40.60

Aluminium - 50Hz

Rated Current	Imped	lance (10 ⁻⁶	Ω/m)	Line	to line vo	ltage drop	o in (mV/r	m) at rate	d current o	amd vario	us power	factors	
(A)	R	Х	Z	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
400	134.25	82.12	157.37	93.01	108.51	108.55	105.74	101.32	95.78	89.35	82.18	74.35	65.91
630	101.19	62.42	118.89	110.42	129.07	129.20	125.93	120.74	114.20	106.59	98.10	88.82	78.81
800	73.80	20.16	76.50	102.26	104.21	98.57	91.53	83.70	75.32	66.51	57.33	47.82	38.02
1000	52.50	15.68	54.79	90.93	93.68	89.04	83.05	76.29	68.99	61.26	53.19	44.80	36.12
1250	47.33	11.26	48.65	102.47	102.85	96.61	89.14	80.99	72.35	63.33	54.00	44.38	34.50
1600	35.75	9.76	37.06	99.07	100.96	95.49	88.67	81.08	72.96	64.42	55.52	46.32	36.82
2000	29.87	7.97	30.92	103.47	105.16	99.34	92.15	84.17	75.65	66.69	57.38	47.75	37.82
2500	23.04	6.75	24.01	99.77	102.53	97.35	90.71	83.24	75.20	66.69	57.81	48.59	39.06
3200	18.46	5.02	19.13	102.32	104.21	98.55	91.49	83.65	75.25	66.43	57.24	47.72	37.92
4000	11.92	2.32	12.14	82.58	81.33	75.71	69.29	62.41	55.21	47.77	40.11	32.27	24.25
5000	7.85	1.24	7.95	67.98	65.87	60.83	55.26	49.38	43.29	37.04	30.64	24.12	17.48

Note: For the 60Hz calculation, divide the reactance (X) by 0.83. And the resistance (R) remains unchanged due to the negligible difference in frequency.

Voltage Drop Calculation

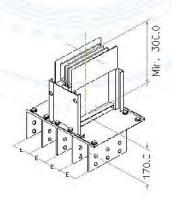

As per IEC 61439-6:2012

	D'	$V = k \times (\sqrt{3}) \times I(R \cos\emptyset + X \sin\emptyset)$
where,	111111111111111111111111111111111111111	7 7 1 1 1 2 1 1 1
DV	=	Line to line voltage drop per meter (to be calculated
1	=	Load curent
CosØ	= -	Load Power Factor
SinØ	=	$Sin\emptyset = Sq. Root (1 - Cos^2\emptyset)$
R	=	Resistance
X	=	Reactano
k	=	The load distribution factor
	*	1 if the load is concentred at the end of the BT run:

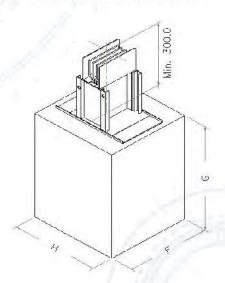
 $(n+1)/(2 \times n)$ if the load is uniformly spread between n branches (where n = no. of TOU)

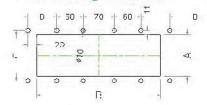
LINKK STANDARD COMPONENTS

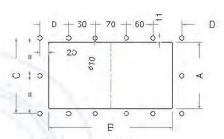
Copper


Ampara (A)	W	x	Н	Weig	ht (kg/m)	Пе
Ampere (A)		(mm)		3P4W	3P4W+50%E	Fig.
400	150	Х	74	14	15	L1-1
630	150	Х	64	16	17	L1-1
800	150	х	74	17	18	L1-1
1000	150	х	94	21.5	23	L1-1
1250	150	х	104	25	27	L1-1
1600	150	х	124	28.5	31	L1-1
2000	150	х	188	42.5	46	L1-2
2500	150	х	218	51	55	L1-2
3200	150	Х	288	71	77	L1-2
4000	150	х	348	59.5	92	L1-2
5000	150	x	468	129	140	L1-2

Aluminium


Ampere (A)	W	X	Н	Weig	ht (kg/m)	Ea.
Ampele (A)		(mm)		3P4W	3P4W+50%E	Fig.
400	150	Х	59	9.7	10	L1-I
630	150	х	74	10.6	11	L1-1
800	150	х	84	11.5	12	L1-1
1000	150	X	114	14.3	15	L1-1
1250	150	Х	144	17	18	L1-1
1600	150	X	184	21.7	23	L1-1
2000	150	Х	234	26.3	28	L1-1
2500	150	х	288	24	36	L1-2
3200	150	Х	368	43.5	46	L1-2
4000	150	х	468	52.5	56	L1-2
5000	150	х	582	71	75	L1-3


Flange End

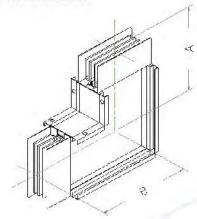

End Feed Cable Box

Mounting Cut Out

[Fig.L2-1]

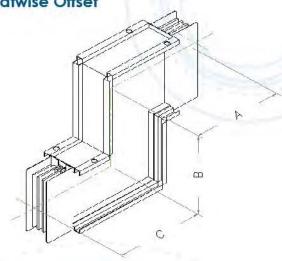
[Fig.L2-2]

Copper

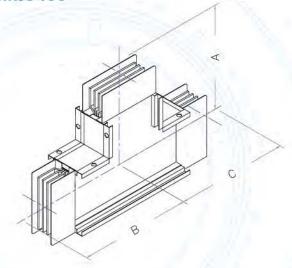

Ampere	Мо	unting Cu	t Out (mr	m)	Interval (mm)	End Fee	d Box Size	e (mm)	Fig.
(A)	Α	В	С	D	E	F	G	Н	
400	50		72						
630	40		62					500 400 L2-1	
800	50	280	72	65	80		500		
1000	70	200	92] 65	00	330	300		
1250	80		102			300			
1600	100		122						
2000	164		186						
2500	194		216			4	V		
3200	264	340	286	95	100	400	650	450	L2-2
4000	324		346			400			LZ-Z
5000	444		466			500			

Aluminium

Ampere	Мо	unting Cu	t Out (mr	n)	Interval (mm)	End Fee	e (mm)	Fig.	
(A)	Α	В	С	D	E	F	G	Н	
400	35		57						
630	50		72				500	400	L2-1
800	60	280	82	65	65 80				
1000	90		112			330			
1250	120		142			330			
1600	160		182						
2000	210		232						
2500	264	340	286	95	100		650	100000	
3200	344	340	366	73	100	400	400 450	100	
4000	444		466		(00	700		L2-2	
5000	558		420			600	700		

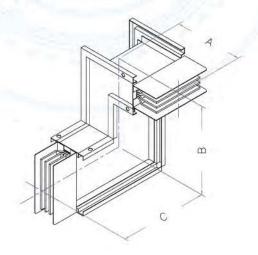


Flatwise Elbow

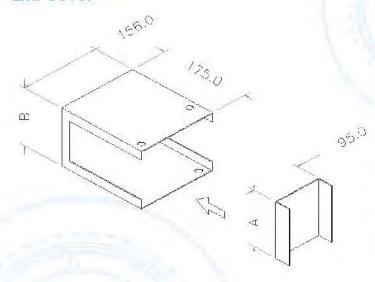

Ampere	Copper	Aluminium			
(A)	Standard (mm) A x B				
400	330 x 330	330 x 330			
630	330 x 330	330 x 330			
800	330 x 330	340 x 340			
1000	340 x 340	355 x 355			
1250	350 x 350	370 x 370			
1600	360 x 360	390 x 390			
2000	390 x 390	415 x 415			
2500	405 x 405	440 x 440			
3200	440 x 440	480 x 480			
4000	470 x 470	530 x 530			
5000	530 x 530	590 x 590			

Flatwise Offset

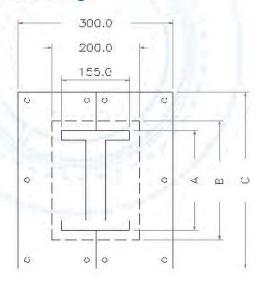
Ampere	Copper	Aluminium					
(A)	Standard (mm) A x B x C						
400	330 x 300 x 330	330 x 300 x 330					
630	330 x 300 x 330	330 x 300 x 330					
800	330 x 300 x 330	340 x 300 x 340					
1000	340 x 300 x 340	355 x 300 x 355					
1250	350 x 300 x 350	370 x 300 x 370					
1600	360 x 300 x 360	390 x 300 x 390					
2000	390 x 300 x 390	415 x 300 x 415					
2500	405 x 300 x 405	440 x 300 x 440					
3200	440 x 300 x 440	480 x 300 x 480					
4000	470 x 300 x 470	530 x 300 x 530					
5000	530 x 300 x 530	590 x 300 x 590					


Flatwise Tee

Ampere	Copper	Aluminium					
(A)	Standard (mm) A x B x C						
400	330 x 330 x 330	330 x 330 x 330					
630	330 x 330 x 330	330 x 330 x 330					
800	330 x 330 x 330	340 x 340 x 340					
1000	340 x 340 x 340	355 x 355 x 355					
1250	350 x 350 x 350	370 x 370 x 370					
1600	360 x 360 x 360	390 x 390 x 390					
2000	390 x 390 x 390	415 x 415 x 415					
2500	405 x 405 x 405	440 x 440 x 440					
3200	440 x 440 x 440	480 x 480 x 480					
4000	470 x 470 x 470	530 x 530 x 530					
5000	530 x 530 x 530	590 x 590 x 590					



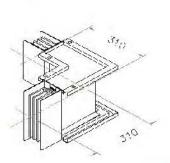
Combination Elbow

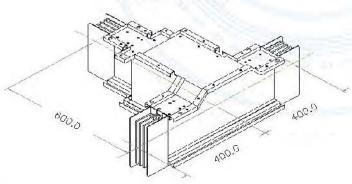

. 7	Copper	Aluminium				
Ampere (A)	Standard (mm) A x B x C					
400	310 x 300 x 330	310 x 300 x 330				
630	310 x 300 x 330	310 x 300 x 330				
800	310 x 300 x 330	310 x 300 x 340				
1000	310 x 300 x 340	310 x 300 x 355				
1250	310 x 300 x 350	310 x 300 x 370				
1600	310 x 300 x 360	310 x 300 x 390				
2000	310 x 300 x 390	310 x 300 x 415				
2500	310 x 300 x 405	310 x 300 x 440				
3200	310 x 300 x 440	310 x 300 x 480				
4000	310 x 350 x 470	310 x 350 x 530				
5000	310 x 350 x 530	310 x 350 x 590				

End Cover

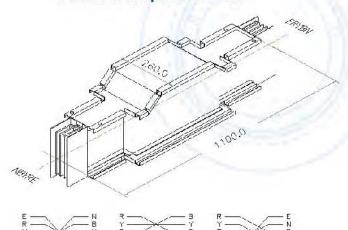
	Copper	Aluminum				
Ampere (A)	Standard (mm) A x B					
400	75 x 80	60 x 65				
630	65 x 70	75 x 80				
800	75 x 80	85 x 90				
1000	90 x 95	115 x 120				
1250	105 x 110	145 x 150				
1600	125 x 130	185 x 190				
2000	190 x 195	235 x 240				
2500	220 x 225	290 x 295				
3200	290 x 295	370 x 375				
4000	350 x 355	470 x 475				
5000	470 x 475	585 x 590				

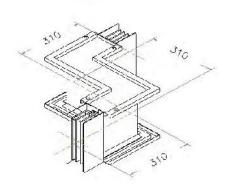
Wall Flange



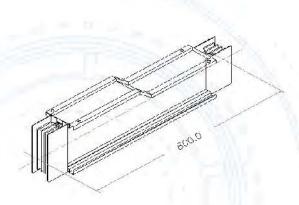

Ampere (A)	Copper	Aluminium
	Standard (mm) A x B x C	
400	85 x 130 x 170	70 x 115 x 165
630	75 x 120 x 160	85 x 130 x 180
800	85 x 130 x 170	95 x 140 x 190
1000	100 x 145 x 185	125 x 170 x 220
1250	115 x 160 x 200	155 x 200 x 250
1600	135 x 180 x 220	195 x 240 x 290
2000	200 x 245 x 285	245 x 290 x 340
2500	230 x 275 x 315	300 x 345 x 395
3200	300 x 345 x 385	380 x 425 x 475
4000	360 x 405 x 445	480 x 525 x 575
5000	480 x 525 x 565	595 x 640 x 690

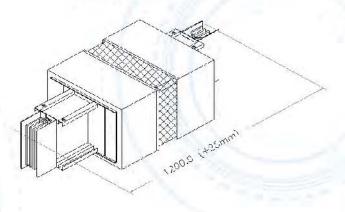
Edgewise Elbow


Edgewise Tee



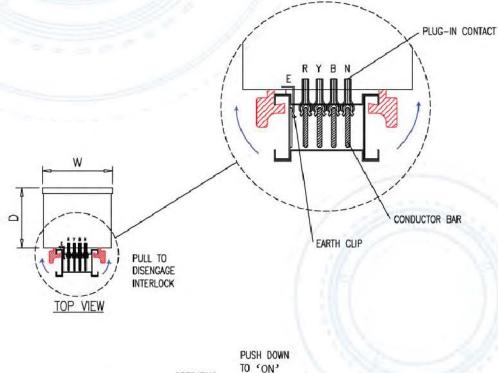
Phase Transposition Unit

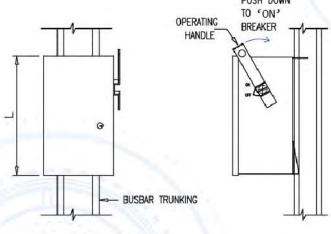

Edgewise Offset



Reducer

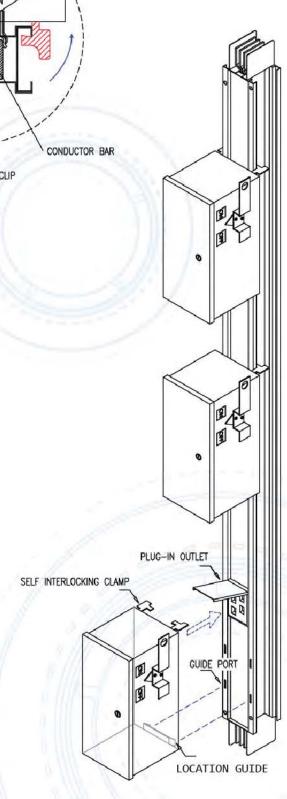
Expansion Unit





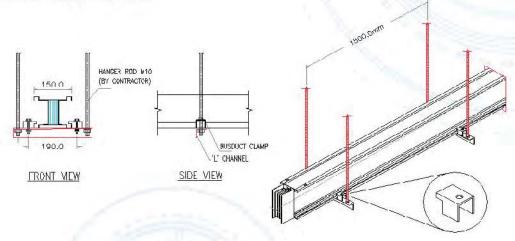
- * Edgewise Elbow = Horizontal Elbow * Flatwise Elbow = Vertical Elbow
- * Refer to manufacturer for SPECIAL degree Elbow

Tap-Off Unit

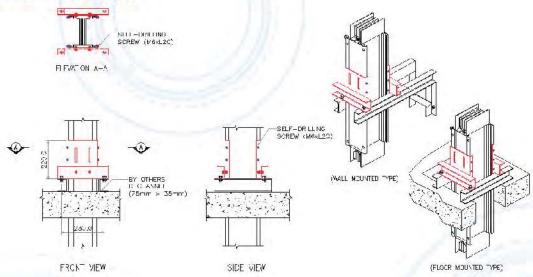

FRONT	VIEW

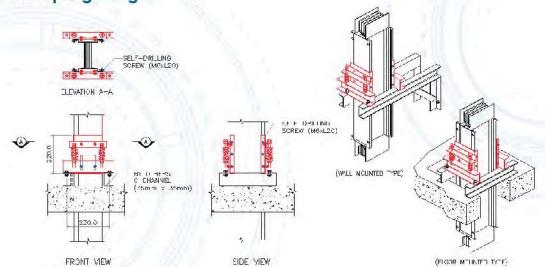
SIDE VIEW

A mam are / A)	Box Size (mm)			
Ampere (A)	DxWxL			
15A ~ 200A	220	250	350	
225A ~ 400A	250	250	500	
500A ~ 800A	300	350	850	


^{*} Tap-Off Unit above 400A use double Plug-in outlet

^{*} Refer to manufacturer for Tap-Off above 800A

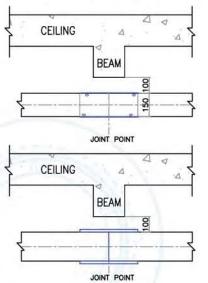



Horizontal Support(Clip)

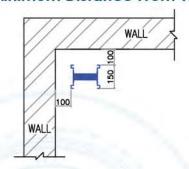
Vertical Fixed Support

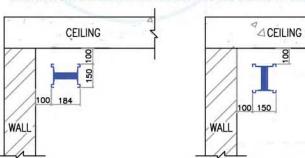
Vertical Spring Hanger



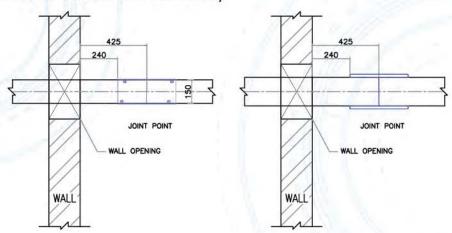

BUSDUCT LAYOUT DESIGN CONSIDERATION

Minimum Distance From Beam


(BUSDUCT UNDER BEAM WITHOUT JOINT POINT)

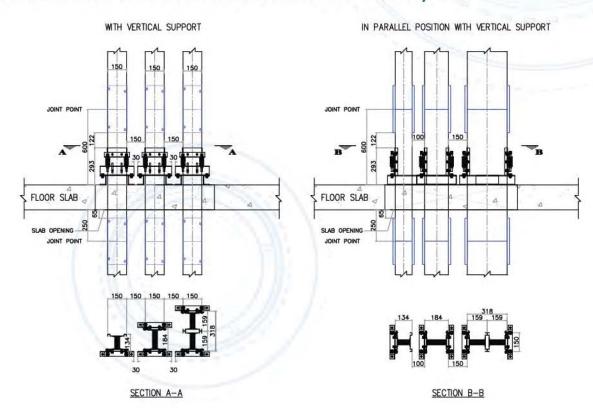

(BUSDUCT UNDER BEAM WITH JOINT POINT)

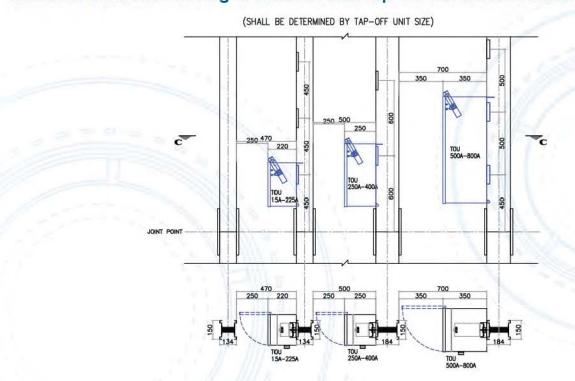
Minimum Distance From Wall



Minimum Distance From Wall And Ceiling

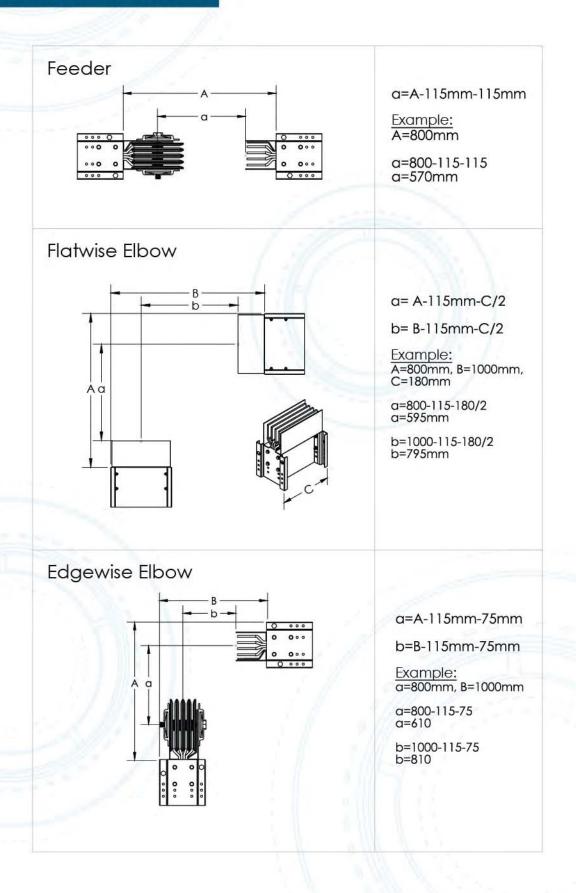
Busduct Jointing Point Through Wall Opening Installation


(Joints Should Not Be Installed Inside Walls)

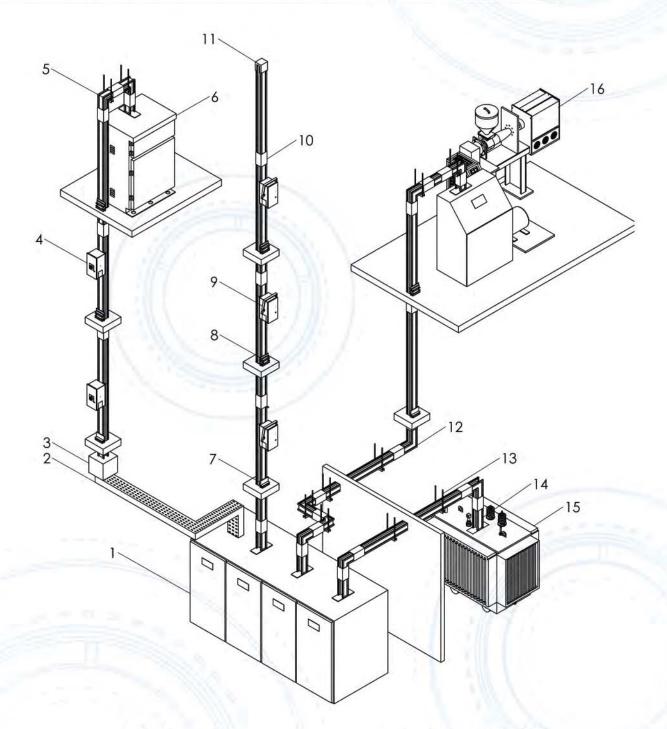


BUSDUCT LAYOUT DESIGN CONSIDERATION

Minimum Clearance Of Vertical Feeder Busduct Joints Side By Side


Minimum Clearance Of Plug-In Busducts With Tap-Off Unit Installed Flat In Parallel Position

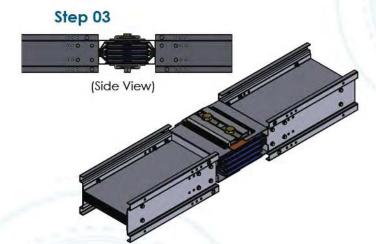
SECTION C-C

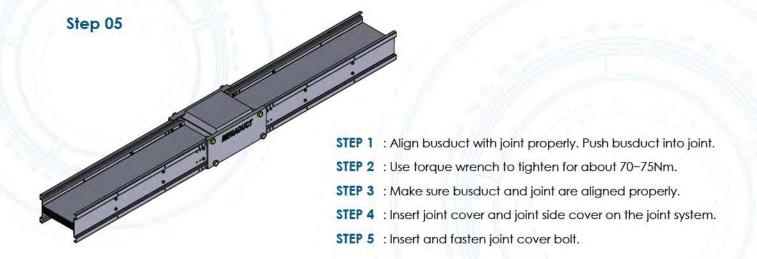


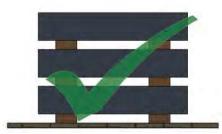
MEASUREMENT GUIDELINE

ILLUSTRATIONS OF LINKK BUSDUCT TRUNKING SYSTEM

- 1. Main Switch Board
- 2. Cable Tray
- 3. End Feed Cable Box
- 4. Tap-Off Unit (Rotary Design)
- 5. Flatwise Elbow
- 6. Sub Switch Board
- 7. Vertical Fixed Support
- 8. Vertical Spring Support


- 9. Tap-Off Unit (Handle Design)
- 10. Joint
- 11. End Cover
- 12. Edgewise Elbow
- 13. Horizontal Support
- 14. Flange End
- 15. Transformer
- 16. Machine

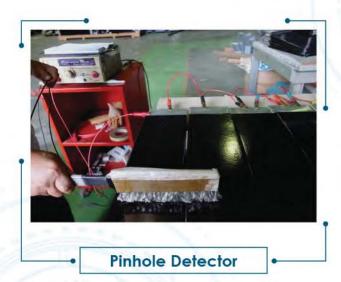

INSTALLATION

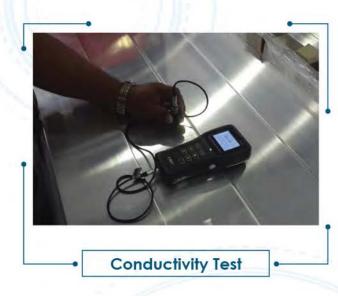

GENERAL PRECAUTION

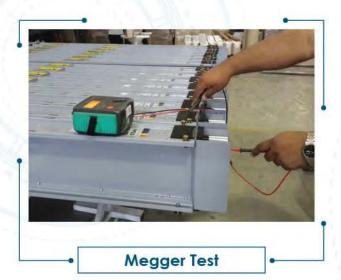
Storage

- 1. Verify the type and quantity of all part of busduct from delivery order. Inspect whether any damage or scratch during transportation.
- 2. Keep away busduct from wet and moisture place. Cover with water proof material for extra protection of busduct.
- 3. Place the stack of busduct on top of 2 pieces of wood. Make sure busduct in horizontal position.
- 4. To prevent the joint of the busway from being soiled, wrap them with vinyl sheet until immediate installation.

Preparation & Installation


- 1. Ensure equipment are strong enough for lifting and transportation.
- 2. Thoroughly check the laying route of the busduct to ensure it free from any obstacle, heat source and water leakage.
- 3. The installation usually start by connecting busduct to the transformer or switchboard.
- 4. Ensure to check the description and identification of each piece before installing.
- 5. Remove dirt and dust at joint area before installing busduct joint.
- Ensure to test insulation resistance by merger test. The test must be performed for every joint connection.




QUALITY CONTROL

CERTIFICATES

UL

ISO

KEMA KEUR

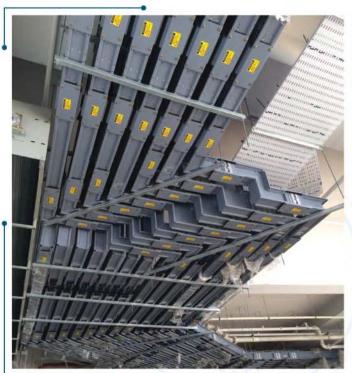
DEKRA (KEMA Quality)



STANDARD & TESTING

LINKK provides a good structure short circuit protection design which had been certified by ASTA, KEMA & UL

LINKK Busduct is capable of carrying full rated current continuously in ambient condition of 95% related humidity and also ambient temperature in 50°C.



Busduct design verification according to IEC 61439.

- 10.2 Strength of material and parts.
- 10.3 Degree of protection of enclosure.
- 10.4 Clearance and creepage distances.10.5 Protection against electric shock an integrity of protective circuits.
- 10.7 Internal electrical circuit and connections.
- 10.8 Terminals for external conductors.
- 10.9 Dielectric properties.
- 10.10 Verification of temperature-rise.
- 10.11 Short-circuit withstand strength.
- 10.12 Electromagnetic compatibility(EMC).
- 10.13 Mechanical operating.

PROJECT REFERENCES

PROJECT REFERENCES

Residences

Thailand

AEQUA Sukhumvit 49, Marina Bay Central, UAE

Forest City, Malaysia

Binh Khanh, Vietnam

Hotels

Shangri-La Hotel, China

Langham Places, Hong Kong

1 Borneo, Malaysia

Conrad Hotel, **Philippines**

Commercial Complex / Business Premises

Oriental Plaza, Vietnam

Equity Tower, Indonesia

Saigon M&C Tower, Vietnam

Telekom Tower, Malaysia

Al Shoumoukh Tower, Qatar

Airport / High Speed Rail Station

Male International Airport, Maldives

MRT, Singapore

HSR Zuoying Station, Taiwan

Page 27 Page 27

PROJECT REFERENCES

Hospitals

Lantau Hospital, Hong Kong

Belfast City Hospital, Northern Ireland

Bhumibol Adulyadei Hospital, Thailand

Selayang Hospital, Malaysia

Industries / Assembly Lines

Proton Factory, Shah Alam, Perodua Assembly Plant, Malaysia

Malaysia

Singpost Logistics Hub, Singapore

Galtronics, Vietnam

Public Centres

Changi Prison, Singapore

Garden By The Bay, Singapore

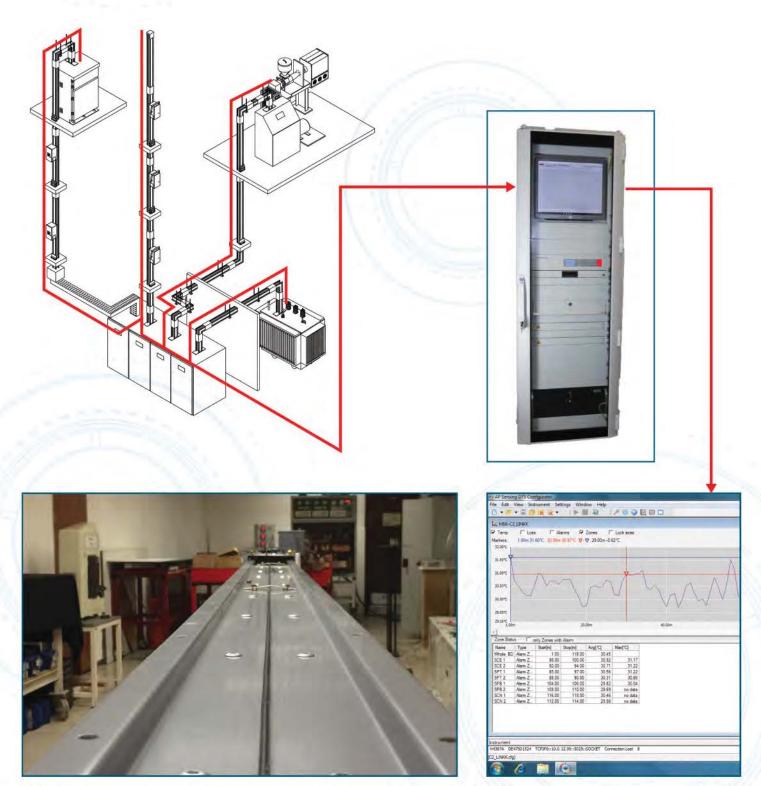
Chiang Mai Convention Centre, Thailand

Customs Headquarters Building, Hong Kong

Information Technology

Microsoft Office, India

PCCW, Hong Kong



Vista Hub, Philippines



CONTINUOUS BUSDUCT MONITORING SYSTEMS

Continuous busduct monitoring system is a new technology provided by AP sensing which provided continuous temperature monitoring and automatically alarm abnormalities of busduct systems. It consists of Distribution Temperature Sensoning(DTS), optic fibre cable and computer software. It could measure entire busduct system up to 10km. The advantage of this device are longer busduct lifespan, provided alarm system and prevention of fire due to abnormalities of busduct system.

LINKK BUSWAY SYSTEMS (M) SDN BHD (1018052-D)

Lot 43117, Off Jalan Balakong, 43300 Balakong, Seri Kembangan, Selangor Darul Ehsan, Malaysia
Tel: 603 - 8964 4080 Fax: 603 - 8961 8481
Email: customerservice@linkk.com.my / marketing@linkk.com.my website: www.linkk.com.my

Sales & Marketing contact:

TIC MODULAR SYSTEM CO., LTD.
TIC ENGINEERING CO., LTD.
TIC ELECTRIC CORPORATION CO., LTD.

99/9 Moo 12 Puttamonthon 5 Road, Raiking Sampran, Nakhonpathom 73210 Thailand Tel: +662 105 4247 Fax: +662 482 1620 www.ticcorp.net

OUR SIGNATURE PROJECT

The Manufacturer Reserves The Right To Make Further Improvements Without Prior Notice